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What is a potential outcome?

- Concrete example: effect of college on income

- Di — treatment status for person i

Di =

{
1 if i goes to college: “is treated”
0 if i doesn’t go to college: “is untreated”

- Potential outcomes: hypothetical, imaginary, Schrödinger’s Cat type of thing
- Y1i — income for i if i were to go to college: “potential outcome if treated”
- Y0i — income for i were i to not go to college: “potential outcome if untreated”

- Problem: for any student i , we cannot simultaneously observe both Y1i and Y0i .
- One of the potential outcomes is eventually “observed.”
- Yi — observed outcome for student i
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We care about treatment because we care about treatment effects.

Yi = Y0i + Di(Y1i − Y0i) =

{
Y1i if Di = 1
Y0i if Di = 0

- Causal effect: Y1i − Y0i

- Average treatment effect (ATE): E [Y1i − Y0i ]

- Treatment effect on the treated (TOT):

E [Y1i |Di = 1]− E [Y0i |Di = 1] = E [Y1i − Y0i |Di = 1]
observed− counterfactual =

- What we observe: E [Yi |Di = 1]− E [Yi |Di = 0] = TOT + selection bias proof

3 / 33



What should we do about selection bias?
- Problem: people who go to college are different than those who don’t.

- Selection bias: E [Y0i |Di = 1]− E [Y0i |Di = 0]
- E.g., people who go to college are more likely have family connections to good jobs.

- Solution: assign college according to a coin flip.
- Di ⊥ Y0i ,Y1i
- Potential outcomes equal on average across two groups.

- E [Y1i |Di = 1] = E [Y1i |Di = 1]
- E [Y0i |Di = 1] = E [Y0i |Di = 1]

- Now we can compare group means to find causal effect of treatment:

E [Yi |Di = 1]− E [Yi |Di = 0] = Average Treatment Effect (ATE) proof

- Would random sampling accomplish the same thing?
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Unfortunately, finding causal effects is rarely that simple.
- Xi — independent variables (a.k.a., covariates, regressors)← vector?

- Yi — dependent variable (a.k.a., outcome, regressand)

- Assume conditional expectation function is linear, e.g., individual income is linear
function of parents’ income on average.

E [Yi |Xi ] = α + βXi

- There is still individual variation: error

ϵi = Yi − E [Yi |Xi ]

E [ϵi ] = 0 proof

- Regression finds the combination of intercept (α) and slope (β) proof that minimize
mean squared error for that conditional expectation function. proof
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Control variables

Suppose we are unable to randomize Di ,
- E.g., kids decide on their own whether to go to college; they don’t listen to us.
- Selection bias ̸= 0
- E [Yi |Di = 1]− E [Yi |Di = 0] ̸= ATE

but we have two different independent variables,
- Di — treatment status (a.k.a., regressor of interest)
- Wi — control

where Wi is correlated with Di and with Yi (once was have accounted for Di ).
- E.g., family wealth (Wi ) gives us some information about whether i goes to college (Di )

and i ’s income (Yi ).
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Multivariate regressions
Now we can compare “matched” group means:

E [Yi |Di = 1,Wi = w ]− E [Yi |Di = 0,Wi = w ]

Assuming the conditional expectation function is linear in Di and Wi , then regression
gives us

Yi = α + βDi + γWi + ϵi

where β is the effect of college, and γ is the effect of family wealth.
- If Di is random conditional on Wi , then β is ATE.
- Conditional Independence Assumption (CIA): E [Di |Wi ] ⊥ ϵi
- E.g., on average, difference in income between people of equal family wealth is caused

by college.

7 / 33



Multivariate regression example

- Suppose our model of the world (“data generating process”)

Yi = α + βDi + γWi + ϵi

where Y is income, D is college, and W is family wealth.

- We get some data, run a regression, and find:
- α̂ = $20,000
- β̂ = $40,000
- γ̂ = 0.1

- Then what is the predicted income for
- Charlie from Willy Wonka? (No college, Wi = −$100)
- Batman? (No college, Wi = $10,000,000)
- Preston Bezos? (College for sure, Wi = $100,000,000,000)
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Omitted Variable Bias
- Suppose model of the world (long) : Yi = α + ρCi + γAi + ϵi

- Y — income
- C — college
- A — ability

- A is unobservable; we can only measure (short) : Yi = α* + ρ*Ci + νi
- C — included (observable)
- A — omitted (unobservable)

- One could prove the following:

ρ* = ρ + γδAC

“short = long + effect of omitted× regression of omitted on included” proof

- For any regression, there are infinite omitted variables. When do they matter?
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Omitted variable bias example

- God knows the coefficients from the long: Yi = α + ρCi + γAi + ϵi
- α = $20,000
- ρ = 0
- γ = $80,000 (Suppose Ai is a dummy.)

- And from the regression of omitted on included: Ai = τ + δACCi + ηi
- τ = 0
- δAC = 0.5

- So what will I find when I estimate the short? Yi = α* + ρ*Ci + νi

- α̂* = $20,000
- ρ̂* = $40,000
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Reverse Causality

- An omitted variable (a.k.a., a “confounding variable”) is the most common critique of
inferring causality from a regression.

- You claim college caused increased income, but actually, talent is the true cause of both
college and higher income!

- A less common but equally valid critique is reverse causality.
- You claim college caused increased income, but actually, increased income caused

college!

- Randomization clearly solves reverse causality.
- College attendance was determined by a coin flip; income has no effect on a coin flip.

- When employing other econometric strategies, think about whether they address
omitted variable bias and reverse causality.
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Difference in Differences (DiD)

Yit = α + β(Di × Tit ) + γDi + δTit + ϵit

Where Yit is an outcome for person i at time t , α is a constant, β is the treatment effect, Di
is treatment status, Tit is a dummy that equals 1 when time t is post-treatment, and ϵit is
the error term.

- Useful when treatment not randomly assigned.

- Identifying assumption: parallel trends
- Sans treatment, treatment group would have progressed just like the control group.
- E [Y0,treat,post ]− E [Y0,treat,pre] = E [Y0,control,post ]− E [Y0,control,pre]

- If Di and Tit are dummies, DiD is a difference in means.

α = E [Yit |Di = 0,Tit = 0]
γ = E [Yit |Di = 1,Tit = 0]− α

δ = E [Yit |Di = 0,Tit = 1]− α

β = E [Yit |Di = 1,Tit = 1]− α− γ− δ
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DiD Basic Example

- Suppose in 2030, Canada made all college free.

- Given income averages by birth year for those in US and Canada, can we construct a
DiD to estimate the causal effect of the policy change on income?

- Income in US for those born in 2000: $50,000
- Income in US for those born in 2020: $60,000
- Income in Canada for those born in 2000: $40,000
- Income in Canada for those born in 2020: $55,000

- Use that data to fill in the regression (where Di = 1 for Canada, and Ti = 1 for 2020):

Yit = α + β(Di × Tit ) + γDi + δTt + ϵit

Yit = $50,000 + $5,000(Di × Tit )− $10,000Di + $10,000Tit + ϵit
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Duflo (2001) “Schooling and Labor Market Consequences of School
Construction in Indonesia”

Sijk = c + α1j + β1k + (PjTi)γ1 + (CjTi)δ1 + ϵijk (1)

“Where Sijk is the education of individual i born in region j in year k , Ti is a dummy
indicating whether the individual belongs to the ‘young’ cohort in the subsample, c1 is a
constant, β1k is a cohort of birth fixed effect, α1j is a district of birth fixed effect, Pj denotes
the intensity of the program in the region of birth, and Cj is a vector of region-specific
variables.”

14 / 33



Duflo (2001): Table 3
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Natura non facit saltus.

- Goal of RCTs is to create two groups that look the same (in expectation):

E[Y1i |Di = 1] = E[Y1i |Di = 0]

- Sometimes RCTs are impossible, but we find two groups whose potential outcomes
should look the same in expectation: natural experiment.

- Borders/cutoffs often create “natural” (man-made) experiments. Examples?
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Comparison at the cutoff example
- We seek effect of college (Di ) on income (Yi ), but unobservable ability (Ai ) confounds:

Yi = α + βDi + γAi + ηi

- Imagine a world with only one college: it has a strict SAT score (Xi ) requirement, and
nobody turns down an acceptance: Di = 1 if Xi ≥ 1400 and 0 otherwise.

- Then compare those who just barely got in to those who just barely got rejected.

E[Yi |Xi = 1400]− E[Yi |Xi = 1399] = β ← for whom?

- Assumption: E[Ai |Xi = 1400] = E[Ai |Xi = 1399]

- But those with 1400 are smarter! Control for Xi . How? Expand bandwidth and run:

Yi = α + β1(Xi ≥ 1400) + δXi + ϵi
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Regression Discontinuity Design (RDD (or RD)) setup
- Treatment is determined by a strict cut-off rule:

Di =

{
1 if xi ≥ x0

0 if xi < x0

- Then the regression equation looks like this:

Yi = α + βxi + ρDi + ηi

Yi = α + βxi + ρ1(xi ≥ x0) + ηi

- Assumption: absent Di , E [Yi ] is linear function of the running variable xi .

E [Y0i ] = α + βxi ∀xi
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RD near the cut-off

- Might be too ambitious to assume same functional form everywhere.

- In practice, better to just zoom in to the cutoff.

lim
xi↓x0

E [Yi |xi ]− lim
xi↑x0

E [Yi |xi ]

= E [Y1i |xi = x0]− E [Y0i |xi = x0]

= ρ

- Relies on assumption that, for small values of δ (bandwidth),

E [Yi |x0 − δ < xi < x0] ≈ E [Y0i |xi = x0]

E [Yi |x0 < xi < x0 + δ] ≈ E [Y1i |xi = x0]
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Dell (2009): “The Persistent Effects of Peru’s Mining Mita”

cidb = α + γmitad + X ′id β + f (geographic locationd ) + ϕb + ϵidb

“where cidb is the outcome variable of interest for observation i in district d along segment
b of the mita boundary, and mitad is an indicator equal to 1 if district d contributed to the
mita and equal to 0 otherwise; X ′id is a vector of covariates that includes the mean area
weighted elevation and slope for district d and (in regressions with equivalent household
consumption on the left-hand side) demographic variables giving the number of infants,
children, and adults in the household; f (geographic locationd ) is the RD polynomial,
which controls for smooth functions of geographic location. Various forms will be
explored. Finally, ϕb is a set of boundary segment fixed effects that denote which of four
equal length segments of the boundary is the closest to the observation’s district capital.”
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Dell (2009): Table II
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Agte and Bernhardt (2023): “The Economics of Caste Norms: Purity,
Status, and Women’s Work in India”

yi,v = α + γEast + f (locationv ) + βXi,v + ϵi,v

“where yi,v is the outcome of interest for individual i in village v and East is an indicator
variable equal to 1 if the village is on the eastern side of the Mahanadi River boundary
and zero otherwise. f (locationv ) is the RD polynomial, which controls for smooth
functions of geographic location for village v . Xi is a vector of covariates for individual i ,
which include age, survey date fixed effects, and enumerator fixed effects.
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Agte and Bernhardt (2023): Tabel 5
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De-meaned regression
- We seek the effect of studying philosophy (Pi ) on income, so we estimate

Yi = α + βPi + ϵi

- We find β̂ = $50,000. Not what we expected. Why?
- Hypothesis: Rich kids study philosophy, rich kids go to fancy schools, ↑ income.
- Test: subset to people within just one school, rerun regression.

Yi = αMIT + βMITPi + ϵi ∀i ∈ MIT

- Similarly, we can subtract the average income at school s (Ys) from the income of
each person i at school s (Yis).

Yis − Ys = βde-meanedPis + ϵis
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Fixed Effects (FEs): de-meaning or controls?
- Remember, including control Wi in regression allows us to compare within groups:

E[Yi |Di = 1,Wi = w ] = E[Yi |Di = 0,Wi = w ]

- We could run our within-school comparisons by including dummies for each school.

Yi = α + βPi + γ1MITi + γ2Harvardi + γ3BUi + γ4Berklee + γ5Tuftsi + γ6BCi . . .

- Software does this automatically with fixed effects (FEs), which we write like this,

Yis = αs + βPis + ϵis

where αs signifies a series of dummies, one for each school in the dataset,
essentially letting each school have its own intercept.
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Dell, Jones, Olken (2012): Temperature and Growth

- Levels regression: gi = α + βTi + ϵi

- De-meaned regression: git − gi = α + β(Tit − Ti) + ϵit

- Fixed effects regression: git = αi + βTit + ϵit

- What they do in the paper:

git = θi + θrt +
L

∑
j=0

ρjTit−j + ϵit

“where θi are country fixed effects, θrt are time fixed effects (interacted separately
with region dummies and a poor country dummy in our main specifications), ϵit is an
error term clustered simultaneously by country and region-year, and Tit is a vector of
annual average temperature and precipitation with up to L lags included.”
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Interactions

- Adding an interaction term to the fixed effects regression:

girt = αi + γrt + βTrt + τTrt × POORi + ϵirt

- Suppose POORi is binary. Interpret these hypothetical results:
- β ≈ 0, τ < 0
- β > 0, τ ≈ 0
- β < 0, τ > 0

- Suppose POORi is continuous. How does that change things?
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de Mel et al. (2008) “Return to capital in microenterprises”

- RCT: give cash to businesses.

Yit = α +
4

∑
g=1

βgTreatmentgit +
9

∑
t=2

δt + λi + ϵit

“where Y represents the outcome of interest; g = 1 to 4, the four treatment types
granted to enterprise i any time before wave t ; δt are wave fixed effects and λi are
enterprise fixed effects.”

- Why include controls (in this case fixed effects) in an RCT?

- Why does one of the sums start from 2?
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de Mel et al. (2008): Table II
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Instrumental Variables (IV) or Two-Stage Least Square (2SLS)

- We want to estimate Yi = α + βDi + ϵi , but Di is not randomly assigned. We can use
Zi as an instrument for Di if two assumptions hold:

- Relevance: Cov[Zi ,Di ] ̸= 0
- If this holds, then we have a valid first stage regression: Di = τ + ϕZi + ηi

- Excludability/exogeneity: Cov[Zi , ϵi ] = 0
- Excludability can be broken down into:

- As-good-as-random: Zi does not need to be randomly assigned, but it needs to be
uncorrelated with any other Xi that is unobserved (not controlled for) that affects on Yi .

- Exclusion restriction: Zi affects Yi only through its effect on Di .

- If this holds, then we have a valid reduced form regression: Yi = θ + ρZi + νi

- Wald: βIV = ρ
ϕ
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IV example
- Model of the world: Yi = α + βDi + ϵi

- Di (treatment, i.e., college) not randomly assigned; selection bias.

- Randomly assign lottery winners (Zi ): free college!
- Winners (Zi = 1): 70% go to college, make $70,000 on average.
- Losers (Zi = 0): 50% go to college, make $60,000.

First Stage: Di = τ + ϕZi + ηi

Di = 0.5 + 0.2Zi + ηi

solve for predicted Zi : Ẑi = −2.5 + 5Di

Reduced Form: Yi = θ + ρZi + νi

Yi = $60,000 + $10,000Zi + νi

plug in Z: Yi = $35,000 + $50,000Di + ϵi
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How to think about IV/2SLS

- Zi causes some people i to take up treatment Di — compliers
- The scholarship caused a some people to go to college who otherwise wouldn’t have.

- Some people would have taken up Di even if they hadn’t gotten Zi — always-takers
- Rich people don’t need the scholarship.

- Others wouldn’t have taken up Di even if they had gotten Zi — never-takers
- If you want be a mechanic, you have no use for a scholarship.

- For the latter two groups, we have no way of finding out the counterfactual:
- For always-takers, what is E [Y0i ]?
- For never-takers, what is E [Y1i ]?

- βIV tells us the effect of Di on compliers: the local average treatment effect (LATE).
- The effect of college for those who wouldn’t have gone if not for the scholarship.
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More ways to think about IV/2SLS
- Model of the world — effect (β) of college (Di ) on income (Yi ): Yi = α + βDi + ϵi

- Estimate first stage — effect (ϕ) of lottery (Zi ) on college (Di ): Di = τ + ϕZi + ηi

- From here, can go one of two different directions to arrive at the same destination:
1. Two-stage least squares (2SLS)

- Predict treatment (college, D̂i ) with instrument (lottery, Zi ): D̂i = τ̂ + ϕ̂Zi
- Plug predicted treatment into model, estimate second stage: Yi = α + β2SLSD̂i + ϵi

2. Instrumental variables (IV)
- Estimate reduced form, effect of instrument (lottery, Zi ) on outcome (income, Yi ):

Yi = θ + ρZi + νi
- Scale up reduced form by first stage to get Wald: βIV =

ρ
ϕ

- Luckily, βIV = β2SLS, so only one of these two intuitions needs to make sense to you.
1. 2SLS: The effect of college for people caused by the lottery to go to college.
2. IV: If the lottery worked on everybody, this is how big the effect would be.

33 / 33



Selection Bias Proof

E [Yi |Di = 1]− E [Yi |Di = 0] (1)
= E [Y1i |Di = 1]− E [Y0i |Di = 0] (2)
= E [Y1i |Di = 1]− E [Y0i |Di = 0] + E [Y0i |Di = 1]− E [Y0i |Di = 1] (3)
= E [Y1i |Di = 1]− E [Y0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0] (4)
= E [Y1i − E0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0] (5)
= TOT + Selection Bias (6)

Go Back

1 / 7



Proof that random assignment eliminates selection bias

We begin by comparing group means:

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Y1i |Di = 1]− E [Y0i |Di = 0]

Because Di ⊥ Y0i ,Y1i , the potential outcomes of the groups are the same in expectation,
then,

= E [Y1i |Di = 1]− E [Y0i |Di = 1]
= E [Y1i − Y0i |Di = 1]
= E [Y1i − Y0i ]

= Average treatment effect (ATE) go back
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Proof that ϵ is mean zero

Yi = α + βXi + ϵi (1)
ϵi = Yi − α− βXi (2)
ϵi = Yi − E [Yi |Xi ] (3)

E [ϵi ] = E [Yi ]− E
[
E [Yi |Xi ]

]
(4)

E [ϵi ] = E [Yi ]− E [Yi ] (5)
E [ϵi ] = 0 (6)

Go Back
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Finding α and β in bivariate regression

E [ϵi ] = 0 (1)
E [Yi − α− βXi ] = 0 (2)

α = E [Yi ]− βE [Xi ] (3)

Referring back to (2)...

E
[
Xi(Yi − α− βXi)

]
= 0 (4)

E
[
Xi(Yi −

(
E [Yi ]− βE [Xi ]

)
− βXi)

]
= 0 (5)

E [XiYi ]− E [Xi ]E [Yi ] + β
(
E [Xi ]

)2 − βE [Xi
2] = 0 (6)

β =
E [XiYi ]− E [Xi ]E [Yi ]

E [Xi
2]−

(
E [Xi ]

)2 (7)

β =
Cov(Xi ,Yi)

V(Xi)
(8)

Go Back
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Proof that α and β minimize MSE

argmina,b E
[
(Yi − ϵi)

2] (1)

= argmina,b E
[(

Yi − (a + bXi)
)2
]

(2)

= argmina,b E [Yi
2]− 2aE [Yi ]− 2bE [XiYi ] + a2 + 2abE [Xi ] + b2E [Xi

2] (3)
(4)

First order condition for a:

0 =
∂E [Yi

2]− 2aE [Yi ]− 2bE [XiYi ] + a2 + 2abE [Xi ] + b2E [Xi
2]

∂a
(5)

= 0− 2E [Yi ]− 0 + 2a + 2bE [Xi ] + 0 (6)
a = E [Yi ]− bE [Xi ] (7)

continued...
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Proof that α and β minimize MSE
First order condition for b:

0 =
∂E [Yi

2]− 2aE [Yi ]− 2bE [XiYi ] + a2 + 2abE [Xi ] + b2E [Xi
2]

∂b
(8)

= 0− 0− 2E [XiYi ] + 0 + 2aE [Xi + 2bE [Xi
2]] (9)

= −E [XiYi ] + E [XiYi ]− b
(
E [Xi ]

)2
+ bE [Xi

2] (10)

b =
E [XiYi ]− E [Xi ]E [Yi ]

E [Xi
2]−

(
E [Xi ]

)2 (11)

= β (12)

Plugging back into (7)...

a = E [Yi ]− βE [Xi ] (13)
= α (14)

Go Back
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Proof that Long = Short + blah × blah
- Long: Yi = α + ρCi + γAi + ϵi

- Short: Yi = α* + ρ*Ci + νi

- Regression of omitted on included: Ai = τ + δACCi + ηi , so δAC = Cov(Ai ,Ci )
V(Ci )

ρ* =
Cov(Yi ,Ci)

V(Ci)

=
Cov(α + ρCi + γAi + ϵi ,Ci)

V(Ci)

=
Cov(α,Ci) + Cov(ρCi ,Ci) + Cov(γAi ,Ci) + Cov(ϵi ,Ci)

V(Ci)

=
0 + ρV(Ci) + γCov(Ai ,Ci) + 0

V(Ci)

= ρ + γδAC

Go Back
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