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What is a potential outcome?

- Concrete example: effect of college on income

D; — treatment status for person i

D — 1 if i goes to college: “is treated”
" 10 ifidoesnt go to college: “is untreated”

Potential outcomes: hypothetical, imaginary, Schrodinger’s Cat type of thing

- Yy —income for i if i were to go to college: “potential outcome if treated”
- Yo — income for i were i to not go to college: “potential outcome if untreated”

Problem: for any student /, we cannot simultaneously observe both Y;; and Yy;.

- One of the potential outcomes is eventually “observed.”
- Y; — observed outcome for student i
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We care about treatment because we care about treatment effects.

Yy ifD;=1

Yi = Yoi + Di( Y1 — Yoi) = {Y D — 0
oi if D =

- Causal effect: Yq; — Yo
- Average treatment effect (ATE): E[Y;; — Yol
- Treatment effect on the treated (TOT):

E[Y1i|D; = 1] — E[Yyi|D; = 1] = E[Yy; — Yoi|D; = 1]
observed — counterfactual =

- What we observe: E[Y;|D; = 1] — E[Y;|D; = 0] = TOT + selection bias > proof
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What should we do about selection bias?

- Problem: people who go to college are different than those who don't.
- Selection bias: E[Yy;|D; = 1] — E[Yy;|D; = 0]

- E.g., people who go to college are more likely have family connections to good jobs.

- Solution: assign college according to a coin flip.
- Dj L Yo, Yai
- Potential outcomes equal on average across two groups.
- E[Y4j|D; = 1] = E[Y4;|D; = 1]
- E[YoilD; = 1] = E[Yoi|D; = 1]

- Now we can compare group means to find causal effect of treatment:

E[Y;|D; = 1] — E[Y;|D; = 0] = Average Treatment Effect (ATE) > proof

- Would random sampling accomplish the same thing?
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Unfortunately, finding causal effects is rarely that simple.
- X; — independent variables (a.k.a., covariates, regressors) < vector?

- Y; — dependent variable (a.k.a., outcome, regressand)

Assume conditional expectation function is linear, e.g., individual income is linear
function of parents’ income on average.

EYilXi] = a + BX;

There is still individual variation: error

ei = Yi — E[Y[X]]
E[ef] — O » proof

Regression finds the combination of intercept («) and slope () «rreof that minimize
mean squared error for that conditional expectation function. > proof
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Control variables

Suppose we are unable to randomize D;,

- E.g., kids decide on their own whether to go to college; they don't listen to us.
- Selection bias # 0
- E[Yj|D; = 1] — E[Y{|D; = 0] # ATE

but we have two different independent variables,

- D; — treatment status (a.k.a., regressor of interest)
- W; — control

where W; is correlated with D; and with Y; (once was have accounted for D).

- E.g., family wealth (W;) gives us some information about whether i goes to college (D;)
and /’s income (Y;).
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Multivariate regressions
Now we can compare “matched” group means:

E[Y;|D; =1, W, = w] — E[Y||D; =0, W; = w]

Assuming the conditional expectation function is linear in D; and W;, then regression

gives us
Yi=a+BDi+ YW, +¢

where f is the effect of college, and + is the effect of family wealth.

- If D; is random conditional on W;, then B is ATE.

- Conditional Independence Assumption (CIA): E[D;|W;] L ¢;

- E.g., on average, difference in income between people of equal family wealth is caused
by college.
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Multivariate regression example

- Suppose our model of the world (“data generating process”)
Yi=a+BDi+ W +e
where Y is income, D is college, and W is family wealth.

- We get some data, run a regression, and find:

- @ = $20,000
- B = $40,000
- 7=01

- Then what is the predicted income for
- Charlie from Willy Wonka? (No college, W; = —$100)
- Batman? (No college, W; = $10, 000, 000)
- Preston Bezos? (College for sure, W; = $100, 000, 000, 000)
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Omitted Variable Bias
Suppose model of the world (long) : Y; = a + pC; + YA +¢€;

- Y —income
- C—college
- A— ability

Ais unobservable; we can only measure (short) : Y; = a* + p*C; + v;

- C —included (observable)
- A— omitted (unobservable)

One could prove the following:

p"=p+rdac
“short = long + effect of omitted x regression of omitted on included” « proof

For any regression, there are infinite omitted variables. When do they matter?
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Omitted variable bias example

- God knows the coefficients from the long: Y; = a + pC; + YA, + €;
-« = $20,000
-p= 0
- v = $80, 000 (Suppose A, is a dummy.)

- And from the regression of omitted on included: A; = T 4 64cC; + 17;
-1t=0
- Spc =05

- So what will | find when | estimate the short? Y; = a* + p*C; + v;

- & = $20,000
- p* = $40,000
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Reverse Causality

- An omitted variable (a.k.a., a “confounding variable”) is the most common critique of
inferring causality from a regression.
- You claim college caused increased income, but actually, talent is the true cause of both
college and higher income!

A less common but equally valid critique is reverse causality.

- You claim college caused increased income, but actually, increased income caused
college!

Randomization clearly solves reverse causality.
- College attendance was determined by a coin flip; income has no effect on a coin flip.

When employing other econometric strategies, think about whether they address
omitted variable bias and reverse causality.
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Difference in Differences (DiD)

Yii = a+ B(D; X Ty) + D + 0Ty + €t
Where Yj; is an outcome for person i at time t, « is a constant, g is the treatment effect, D;

is treatment status, Tj; is a dummy that equals 1 when time t is post-treatment, and €; is
the error term.

- Useful when treatment not randomly assigned.

- Identifying assumption: parallel trends
- Sans treatment, treatment group would have progressed just like the control group.
- E[Yo,treat,post] - E[YO,treat,pre} = E[Yo,control,post] - E[YO,control,pre]

- If D; and T are dummies, DiD is a difference in means.

a = E[Yy|D; =0, Ty = 0]
v = E[Yy|Di=1,Ty=0] -
6=E[Yy|D;=0,Ty=1] -
B =E[YylDi =1, Tn—ﬂ—f’é—v 0
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DiD Basic Example

- Suppose in 2030, Canada made all college free.

- Given income averages by birth year for those in US and Canada, can we construct a
DiD to estimate the causal effect of the policy change on income?

- Income in US for those born in 2000: $50,000
- Income in US for those born in 2020: $60,000
- Income in Canada for those born in 2000: $40,000
- Income in Canada for those born in 2020: $55,000

- Use that data to fill in the regression (where D; = 1 for Canada, and T; = 1 for 2020):

Yi =a+ B(D; x Ty) +vDi+ 0T + €t
Y, = $50,000 + $5,000(D; x T;) — $10,000D; + $10,000T;; + €;
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Duflo (2001) “Schooling and Labor Market Consequences of School
Construction in Indonesia”

Sii = €+ a1j+ Pa + (P Ti) 11 + (CjTi)d1 + € (1)

“Where S is the education of individual / born in region j in year k, T; is a dummy
indicating whether the individual belongs to the ‘young’ cohort in the subsample, ¢y is a
constant, B is a cohort of birth fixed effect, a4 is a district of birth fixed effect, P; denotes
the intensity of the program in the region of birth, and C; is a vector of region-specific

variables.”
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Duflo (2001): Table 3

TABLE 3—MEANS OF EDUCATION AND LOG(WAGE) BY COHORT AND LEVEL OF PROGRAM CELLS

Years of education

Log(wages)

Level of program in region of birth

Level of program in region of birth

High Low Difference High Low Difference
1) (2) (3) @ 5 (6)
Panel A: Experiment of Interest
Aged 2 to 6 in 1974 8.49 9.76 -1.27 6.61 6.73 -0.12
(0.043) (0.037) (0.057) (0.0078) (0.0064) (0.010)
Aged 12 to 17 in 1974 8.02 9.40 -1.39 6.87 7.02 —0.15
(0.053) (0.042) (0.067) (0.0085) (0.0069) (0.011)
Difference 0.47 0.36 0.12 —0.26 —0.29 0.026
(0.070) (0.038) (0.089) (0.011) (0.0096) (0.015)
Panel B: Control Experiment
Aged 12 to 17 in 1974 8.02 9.40 —1.39 6.87 7.02 —0.15
(0.053) (0.042) (0.067) (0.0085) (0.0069) (0.011)
Aged 18 to 24 in 1974 7.70 9.12 —1.42 6.92 7.08 —0.16
(0.059) (0.044) (0.072) (0.0097) (0.0076) (0.012)
Difference 0.32 0.28 0.034 0.056 0.063 0.0070
(0.080) (0.061) (0.098) (0.013) (0.010) (0.016)

Notes: The sample is made of the individuals who earn a wage. Standard errors are in parentheses.
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Natura non facit saltus.

- Goal of RCTs is to create two groups that look the same (in expectation):

E[Y1i| Dy = 1] = E[Y4|D; = 0]

- Sometimes RCTs are impossible, but we find two groups whose potential outcomes
should look the same in expectation: natural experiment.

- Borders/cutoffs often create “natural” (man-made) experiments. Examples?
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Comparison at the cutoff example
- We seek effect of college (D;) on income (Y;), but unobservable ability (A;) confounds:

Y,'ZC(—F,BD/—i-’)/A,'—FI’],'

- Imagine a world with only one college: it has a strict SAT score (X;) requirement, and
nobody turns down an acceptance: D; = 1 if X; > 1400 and 0 otherwise.

- Then compare those who just barely got in to those who just barely got rejected.
E[Y;|X; = 1400] — E[Yj|X; = 1399] = B < for whom?

- Assumption: E[A;|X; = 1400] = E[A;|X; = 1399]
- But those with 1400 are smarter! Control for X;. How? Expand bandwidth and run:

Yi = a+ BL(X; > 1400) + 6 .X; + €;
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Regression Discontinuity Design (RDD (or RD)) setup

- Treatment is determined by a strict cut-off rule:

D,‘Z 1 ?fX,'ZXO
0 ifx < xp

- Then the regression equation looks like this:

Y,'=06+13X,'+pD,'+77i
Yi=a+Bxi+pL(x; > Xo) +1;

- Assumption: absent D;, E[Y;] is linear function of the running variable x;.

E[Yo,'] =ua+ ﬁX,‘ VX;
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RD near the cut-off

- Might be too ambitious to assume same functional form everywhere.

- In practice, better to just zoom in to the cutoff.

lim E[Y,|X,] — lim E[Y,|X,]
XfJ'XO X,‘TXO
= E[Y1i|xi = Xo] — E[Yoi|Xi = Xo]
=p
- Relies on assumption that, for small values of ¢ (bandwidth),
E;[y?lxb - 5 < )q < Xb] =~ E;[)Qﬁ’)q — Xb]
E[Yilxo < X < xo+ 4] ~ E[Y1|X = Xo]
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Dell (2009): “The Persistent Effects of Peru’s Mining Mita”

Ciab = & + ymitag + XiyB + f(geographic locationy) + ¢p + €igp

“where ¢y is the outcome variable of interest for observation i in district d along segment
b of the mita boundary, and mitay is an indicator equal to 1 if district d contributed to the
mita and equal to 0 otherwise; X,-’d is a vector of covariates that includes the mean area
weighted elevation and slope for district d and (in regressions with equivalent household
consumption on the left-hand side) demographic variables giving the number of infants,
children, and adults in the household; f(geographic location,) is the RD polynomial,
which controls for smooth functions of geographic location. Various forms will be
explored. Finally, ¢, is a set of boundary segment fixed effects that denote which of four
equal length segments of the boundary is the closest to the observation’s district capital.”
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Dell (2009): Table I

TABLE I
LIVING STANDARDS"
Dependent Variable
Log Equiv. Hausehold Consumption (2001) Stunted Growth, Children 6-9 (2005)
Sample Within: <100 km <75km <50km <100 km <75km <50 km Border
of Bound. of Bound. of Bound. of Bound. of Bound. of Bound. District
m @ 3 “@ [©] ©
Panel A. Cubic Polynomial in Latitude and Longitude
Mita —0.284 —-0.216 —0.331 0.084* 0.087* 0.114**
(0.198) (0.207) (0.219) (0.043) (0.046) (0.048) (0.049)
R? 0.060 0.060 0.069 0.051 0.020 0.017 0.050
Panel B. Cubic Polynomial in Distance to Potosi
Mita —0.337*** —0.307*** —0.329%** .080*** 0.078*** 0.078*** 0.063*
(0.087) (0.101) (0.096) (0.021) (0.022) (0.024) (0.032)
R? 0.046 0.036 0.047 0.049 0.017 0.013 0.047
Pancl C. Cubic Polynomial in Distance to Mita Boundary
Mita —0.277*** —0.230** —0.224** .073%** 0.061*** 0.064*** 0.055*
(0.078) (0.089) (0.092) (0.023) (0.022) (0.023) (0.030)
R? 0.044 0.042 0.040 0.040 0.015 0.013 0.043
Geo. controls yes yes yes yes yes yes yes
Boundary EE.s yes yes yes yes yes yes yes
Clusters 71 60 52 289 239 185 63
Observations 1478 1161 1013 158,848 115,761 100,446 37,421
strict, are in parentheses. The dependent variable is log

AThe unit of observation is the household in columns 1-3 and the individual in columns 4-7. Robust standard errors, adjusted for clustering by

equivalent household consumption (ENAHO (2001)) in columns 1-3, and a dummy equal to 1 if the child has stunted growth and equal to 0 otherwise in columns 4-7 (Ministro de Educaci6n (2005a)). Mita is
an indicator equal to 1 if the houschold's district contributed to the mita and equal to 0 otherwise (Saignes (1984), Amat y Juniet (1947, pp. 249, 284)). Panel A includes a cubic polynomial in the latitude and
longitude of the observation’s district capital, panel B includes a cubic polynomial in Euclidean distance from the observation’s district capital to Potosi, and panel C includes a cubic polynomial in Euclidean
distance to the nearest point on the mita boundary. All regressions include controls for elevation and slope, as well as boundary segment fixed effects (FE.s). Columns 1-3 include demographic controls for
the number of infants, children, and adults in the household. In columns 1and 4, the sample includes observations whose district capitals are located within 100 km of the mita boundary, and this threshold is
reduced to 75 and 50 km in the succeeding columns. Column 7 includes only observations whose districts border the mita boundary. 78% of the observations are in mita districts in column 1, 71% in column
2, 68% in column 3, 78% in column 4, 71% in column 5, 68% in column 6, and 58% in column 7. Coefficients that are significantly different from zero are denoted by the following system: *10%, **5%, and

o105,

21/33



Agte and Bernhardt (2023): “The Economics of Caste Norms: Purity,
Status, and Women’s Work in India”

Yiv = a + yEast + f(location, ) + BX;, + €y

“where y; , is the outcome of interest for individual 7 in village v and East is an indicator
variable equal to 1 if the village is on the eastern side of the Mahanadi River boundary
and zero otherwise. f(location,) is the RD polynomial, which controls for smooth
functions of geographic location for village v. X; is a vector of covariates for individual /,
which include age, survey date fixed effects, and enumerator fixed effects.
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Agte and Bernhardt (2023): Tabel 5

Table 5: First Stage, Work Outcomes, and Beliefs

Census Data Survey Data
FLFP Own Beliefs Community Beliefs
1) @) ®) ) (5) (6) ™ ®)
X . - Caste Caste
Adivasi Occupation: ~ Occupation: Wife Believe Asplratl?n, Believes Prefers
‘Worked Work Housewife .
Share Worker ‘Worker Outside  Appropriate DIL Work Housewife
Pprop: Appropriate DIL
East 0.248** 0.098* 0.143* 0.375" 0.092 -0.199** 0.111* -0.166**
(0.065) (0.052) (0.072) (0.082) (0.068) (0.075) (0.059) (0.078)
Mean for West of River 0.250 0.205 0.336 0.374 0.739 0.571 0.638 0.630
[0.178] [0.404] [0.473] [0.484] [0.440] [0.495] [0.481] [0.483]
N 142 26,283 856 856 813 798 861 73
Villages 142 141 142 142 142 142 142 142

Notes: All regressions are based on a local linear specification estimated separately on each side of the river boundary with a triangular
kernel and 20km bandwidth. Column 1 uses village-level data from the 2011 population census. Column 2 uses individual-level data on caste
women aged 25-64 years from the 2011 Socio-Economic and Caste Census and controls for age, marital status, and whether the household
is classified as scheduled caste. Columns 3-8 use our own survey data with Hindu caste men and controls for age, enumerator fixed effects,
and survey time fixed effects. The outcome in column 1 is the share of individuals who are classified as scheduled tribes in the village. The
outcome in column 2 indicates whether the Hindu woman worked based on the classification of a free-text occupation question (not including
work on own farm). The outcome in column 3 is an indicator variable that is equal to one if the primary occupation of the respondent’s wife
is not housewife. The outcome in column 4 indicates whether the respondent’s wife did one of the following activities at least once in the
past year: agricultural work for pay on someone else’s land, self-employment, non-agricultural daily labor, or salaried work. The outcome
in column 5 indicates whether the respondent believes that it is appropriate for a Hindu woman to work outside, even if not financially
constrained. The outcome in column 6 indicates whether the respondent replied ‘ wife who wants to work for pay’ to the following vignette:
‘assume you had a son of marriageable age and you could choose between two wives for your son. Both wives are from your jati and have
the same education and same financial status. However, only one of them wants to work outside for pay. Which wife would you prefer for
your son?’. The outcomes in columns 7-8 are equivalent to the outcomes in columns 5-6, but instead of asking about the respondent’s own
beliefs, we ask the respondent about what other households in the village believe. Appendix Figure/A3 shows results for different bandwidths
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De-meaned regression
- We seek the effect of studying philosophy (P;) on income, so we estimate

Y,'ZOC‘F,BP,'-}-(:‘,'

- We find B = $50, 000. Not what we expected. Why?

- Hypothesis: Rich kids study philosophy, rich kids go to fancy schools, 1 income.
- Test: subset to people within just one school, rerun regression.

Yi =amT + BmitPi + € Vie MIT

- Similarly, we can subtract the average income at school s (Ys) from the income of
each person i at school s (Yjs).

Yis— Ys= Bde-meaned Pis +€is
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Fixed Effects (FEs): de-meaning or controls?
- Remember, including control W; in regression allows us to compare within groups:

E[Yi|D; =1, W; = w] = E[Y||D; = 0, W; = w]

- We could run our within-school comparisons by including dummies for each school.

Yi=a+ ‘BP, + v{MIT; + yoHarvard; + y3BU; + v4Berklee + 5 Tufts; + 9¢BC; . ..

- Software does this automatically with fixed effects (FEs), which we write like this,

Yis:‘XS'f’,BP/s"‘eis

where a¢ signifies a series of dummies, one for each school in the dataset,
essentially letting each school have its own intercept.
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Dell, Jones, Olken (2012): Temperature and Growth

Levels regression: g; = a + BT; +€;

De-meaned regression: gy —gi = a+ B(Tiy — T;) + €t
Fixed effects regression: git = a; + BTjt + €t

What they do in the paper:

L
Gt = 0i+ 0+ Y 0 Tie—j + €i
j=0

“where 6; are country fixed effects, 6,; are time fixed effects (interacted separately
with region dummies and a poor country dummy in our main specifications), €j; is an
error term clustered simultaneously by country and region-year, and Tj is a vector of
annual average temperature and precipitation with up to L lags included.”
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Interactions

- Adding an interaction term to the fixed effects regression:

it = i+ Yt + BTt + 7Tt X POOR; + €jr¢

- Suppose POOR; is binary. Interpret these hypothetical results:

-B=0,T<0
-B>0,T=0
-Bf<0,T>0

- Suppose POOR,; is continuous. How does that change things?

27/33



de Mel et al. (2008) “Return to capital in microenterprises”

- RCT: give cash to businesses.

4
Yi=a+ Y BgTreatmentgy + Y 5t + Aj + €

9
g=1 t=2

“where Y represents the outcome of interest; g = 1 to 4, the four treatment types
granted to enterprise i any time before wave t; ; are wave fixed effects and A; are
enterprise fixed effects.”

- Why include controls (in this case fixed effects) in an RCT?

- Why does one of the sums start from 2?
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de Mel et al. (2008): Table Il

TABLE II
EFFECT OF TREATMENTS ON OUTCOMES

Capital Log capital Real Log real Owner

Impact of treatment stock stock profits  profits hours worked
amount on: Q) (2) 3) 4) (5)

10,000 LKR in-kind 4,793* 0.40%* 186 0.10 6.06**

(2,714) (0.077) (387)  (0.089) (2.86)
20,000 LKR in-kind 13,167+  0.71*** 1,022 0.21* —0.57

(3,773) (0.169) (592)  (0.115) (341)
10,000 LKR cash 10,781** 0.23**  1,421** 0.15* 4.52*

(5,139) (0.103) (493) (0.080) (2.54)
20,000 LKR cash 23,431%*  (0.53*** 775* 0.21* 237

(6,686) (0.111) (643)  (0.109) (3.26)
Number of enterprises 385 385 385 385 385
Number of observations 3,155 3,155 3,248 3,248 3,378

Notes: Data from quarterly surveys conducted by the authors reflecting nine survey waves of data from
March 2005 through March 2007. Capital stock and profits are measured in Sri Lankan rupees, deflated by
the Sri Lankan CPI to reflect March 2005 price levels. Columns (2) and (4) use the log of capital stock and
profits, respectively. Profits are measured monthly and hours worked are measured weekly. All regressions
include enterprise and period (wave) fixed effects. Standard errors, clustered at the enterprise level, are shown

in parentheses. Sample is trimmed for top 0.5% of changes in profits.

¥p < .01, p < .05,%p < 1.
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Instrumental Variables (IV) or Two-Stage Least Square (2SLS)

We want to estimate Y; = a + BD; + €;, but D; is not randomly assigned. We can use
Z; as an instrument for D; if two assumptions hold:

Relevance: Cov[Z;, D;] # 0
- If this holds, then we have a valid first stage regression: D; = © + ¢Z; + 1;

Excludability/exogeneity: Cov[Z;, €] =0
- Excludability can be broken down into:

- As-good-as-random: Z; does not need to be randomly assigned, but it needs to be
uncorrelated with any other X; that is unobserved (not controlled for) that affects on Y;.
- Exclusion restriction: Z; affects Y; only through its effect on D;.

- If this holds, then we have a valid reduced form regression: Y; = 0 + pZ; + v;

- Wald: ﬁ[\/ = g
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IV example
- Model of the world: Y; = a 4 BD; + €;

- Dj (treatment, i.e., college) not randomly assigned; selection bias.

- Randomly assign lottery winners (Z;): free college!

- Winners (Z; = 1): 70% go to college, make $70,000 on average.
- Losers (Z; = 0): 50% go to college, make $60,000.

First Stage: D; =t + ¢Z + 17;
D;=05+02Z +17,
solve for predicted Z: Z; = —2.5 + 5D;
Reduced Form: Y; = 0 + pZ; + v;
Y; = $60, 000 + $10,000Z; + v;
plug in Z: Y; = $35,000 + $50, 000D; + €;
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How to think about IV/2SLS

Z; causes some people i to take up treatment D; — compliers
- The scholarship caused a some people to go to college who otherwise wouldn’t have.

Some people would have taken up D; even if they hadn’t gotten Z; — always-takers
- Rich people don’t need the scholarship.

Others wouldn’t have taken up D; even if they had gotten Z; — never-takers
- If you want be a mechanic, you have no use for a scholarship.

For the latter two groups, we have no way of finding out the counterfactual:

- For always-takers, what is E[Yy;]?
- For never-takers, what is E[Y;;]?

- By tells us the effect of D; on compliers: the local average treatment effect (LATE).
- The effect of college for those who wouldn’t have gone if not for the scholarship.
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More ways to think about IV/2SLS
- Model of the world — effect (B) of college (D;) on income (Y)): Y; =« + BD; +¢€;

- Estimate first stage — effect (¢) of lottery (Z;) on college (D)): D; = T+ ¢Z; + 1,

- From here, can go one of two different directions to arrive at the same destination:
1. Two-stage least squares (2SLS)
- Predict treatment (college, D;) with instrument (lottery, Z;): D; = T + $Z;
- Plug predicted treatment into model, estimate second stage: Y; = « + ﬁzsLsﬁf +€;
2. Instrumental variables (1V)

- Estimate reduced form, effect of instrument (lottery, Z;) on outcome (income, Y)):
Y; =0+ pZ +v;
- Scale up reduced form by first stage to get Wald: g,y = %

- Luckily, By = BasLs, SO only one of these two intuitions needs to make sense to you.

1. 2SLS: The effect of college for people caused by the lottery to go to college.
2. IV: If the lottery worked on everybody, this is how big the effect would be.
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Selection Bias Proof

E[Y,"D,- = 1] — E[Y,-’D,' = 0]

= E[Y1,"D,' = 1] — E[YO/’D,' =
— E[Yy|D; = 1] — E[Yoi| D, =
= E[Y4i|Dj = 1] — E[Yoi| Di =
= E[Y4; — Eoi|D; = 1] + E[ Yo
= TOT + Selection Bias

<« Go Back

]
]
]
D;

+E[Y0,"D,' = 1] —E[Yo,'|D,' = 1]
+ E[Yoi|D; = 1] — E[Y,i|D; = 0]
= 1] — E[Y0i|D; = 0]

~_~ o~ o~~~ —~
oD O A WO N
~— ~— ~— ~—~ ~—~ ~~—

1/7



Proof that random assignment eliminates selection bias

We begin by comparing group means:

E[Y;|D; = 1] — E[Y;|D; = 0] = E[Y;4;|D; = 1] — E[Yoi|D; = 0]

Because D; 1 Yjp;, Yij, the potential outcomes of the groups are the same in expectation,
then,

= E[Yy;|D; = 1] — E[Yyi| D; = 1]
:E[YI_YOI|DI_1]
= E[Y1i — Yol

= Average treatment effect (ATE)  «goback
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Proof that € is mean zero

Y; :uc—l—ﬁX;—l—ei

€i=Yi—a—pX

ej = Y; — E[Yi|Xi]
Elei] = E[Y)] — E[E[Yi|X]]
Elej] = E[Yi] — E[Y]]
E[(—Z,']ZO
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N

A~ N~~~ ~
A W
~— — ~— ~— ~— ~—

D O

3/7



Finding « and B in bivariate regression

Efei]
E[Y; —a— BXi]
4

I
m o o

[Yi] = BE[Xi]
Referring back to (2)...

E[Xi(Yi — (E[Yi] - BE[Xi]) — BX;
EX i) — EIX]E[Y] + B(E[X])® —ﬁE[X/

E[X(Y; —(x—ﬁX ]
]

0
0
0
E[X;Yi] — EIX]E[Yi]

)]

P e - (E)?
~ Cov(X, V)

= V)




Proof that « and  minimize MSE

argming p, E[(Y,' — e,-)2]
— argmingp E[(Y,- —(a+ bx,-)ﬂ
= argmin, , E[Y;?] — 2aE[Y;] — 2bE[X; Y] + & + 2abE[X;] + b*E[X{]

First order condition for a:

0 OE[Y/?] — 2aE[Y;] — 2bE[X; Y] + & + 2abE[X;] + PE[X?]
n 0a
=0-2E[Y]| - 0+2a+2bE[X;] +0

a= E[Yj] - bE[X]]

» continued...
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Proof that « and  minimize MSE

First order condition for b:

0 OE[Y;?] — 2aE[Y;] — 2bE[X; Y] + & + 2abE[X;] + BPE[X?]

=0-0-2E[X;Y;] +0+ 2aE[§([,-)+ 2bE[ X
= —E[X;Y)] + E[X;Y}] — b(E[X}])* + bE[X?]
E[XiYi] — E[X]E[Y]]
E[X?) - (E[X)])°
=p

Plugging back into (7)...
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Proof that Long = Short + blah x blah
- Long: Yi=a+pC;+ YA +€;
- Short: Y; = a* +p*C; + v;

- Regression of omitted on included: A; = T+ dacCi + 7i, SO dac = %
. _ Cov(Y;, Cj)
- V(G)
B Cov(a + pCi+ YA + €, Ci)
B V(Ci)
_ Cov(a, G;) + Cov(pC;, Cj) + Cov(vA;, Ci) + Cov(e;, C;)
B V(Gi)
~ 0+pV(Cj) +vCov(A;, Cj)+0

V(G)
=p+Yoac

<« Go Back
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